top of page
TMRM-data_edited.jpg

Recent Publications

Calcium influx through the mitochondrial calcium uniporter holocomplex, MCU cx

           J Mol Cell Cardiol​ 2021 Feb;151:145-154. doi: 10.1016/j.yjmcc.2020.10.015. Epub 2020 Nov 2.

                                            Liron Boyman 1Maura Greiser 2W Jonathan Lederer 3

Abstract

Ca2+ flux into the mitochondrial matrix through the MCU holocomplex (MCUcx) has recently been measured quantitatively and with milliseconds resolution for the first time under physiological conditions in both heart and skeletal muscle. Additionally, the dynamic levels of Ca2+ in the mitochondrial matrix ([Ca2+]m) of cardiomyocytes were measured as it was controlled by the balance between influx of Ca2+ into the mitochondrial matrix through MCUcx and efflux through the mitochondrial Na+ / Ca2+ exchanger (NCLX). Under these conditions [Ca2+]m was shown to regulate ATP production by the mitochondria at only a few critical sites. Additional functions attributed to [Ca2+]m continue to be reported in the literature. Here we review the new findings attributed to MCUcx function and provide a framework for understanding and investigating mitochondrial Ca2+ influx features, many of which remain controversial. The properties and functions of the MCUcx subunits that constitute the holocomplex are challenging to tease apart. Such distinct subunits include EMRE, MCUR1, MICUx (i.e. MICU1, MICU2, MICU3), and the pore-forming subunits (MCUpore). Currently, the specific set of functions of each subunit remains non-quantitative and controversial. The more contentious issues are discussed in the context of the newly measured native MCUcx Ca2+ flux from heart and skeletal muscle. These MCUcx Ca2+ flux measurements have been shown to be a highly-regulated, tissue-specific with femto-Siemens Ca2+ conductances and with distinct extramitochondrial Ca2+ ([Ca2+]i) dependencies. These data from cardiac and skeletal muscle mitochondria have been examined quantitatively for their threshold [Ca2+]i levels and for hypothesized gatekeeping function and are discussed in the context of model cell (e.g. HeLa, MEF, HEK293, COS7 cells) measurements. Our new findings on MCUcx dependent matrix [Ca2+]m signaling provide a quantitative basis for on-going and new investigations of the roles of MCUcx in cardiac function ranging from metabolic fuel selection, capillary blood-flow control and the pathological activation of the mitochondrial permeability transition pore (mPTP). Additionally, this review presents the use of advanced new methods that can be readily adapted by any investigator to enable them to carry out quantitative Ca2+ measurements in mitochondria while controlling the inner mitochondrial membrane potential, ΔΨm.

Calcium and bicarbonate signaling pathways have pivotal, resonating roles in matching ATP production to demand

Authors

Maura Greiser, Mariusz Karbowski, Aaron David Kaplan, Andrew Kyle Coleman, Nicolas Verhoeven, Carmen A Mannella, W Jonathan Lederer, Liron Boyman

Publication date

2023/6/5

Journal

Elife

Volume 12

​

Mitochondrial ATP production in ventricular cardiomyocytes must be continually adjusted to rapidly replenish the ATP consumed by the working heart. Two systems are known to be critical in this regulation: mitochondrial matrix Ca2+ ([Ca2+]m) and blood flow that is tuned by local cardiomyocyte metabolic signaling. However, these two regulatory systems do not fully account for the physiological range of ATP consumption observed. We report here on the identity, location, and signaling cascade of a third regulatory system -- CO2/bicarbonate. CO2 is generated in the mitochondrial matrix as a metabolic waste product of the oxidation of nutrients. It is a lipid soluble gas that rapidly permeates the inner mitochondrial membrane and produces bicarbonate in a reaction accelerated by carbonic anhydrase. The bicarbonate level is tracked physiologically by a bicarbonate-activated soluble adenylyl cyclase (sAC). Using structural Airyscan super-resolution imaging and functional measurements we find that sAC is primarily inside the mitochondria of ventricular cardiomyocytes where it generates cAMP when activated by bicarbonate. Our data strongly suggest that ATP production in these mitochondria is regulated by this cAMP signaling cascade operating within the inter-membrane space by

ATP- and voltage-dependent electro-metabolic signaling regulates blood flow in heart

        Proc Natl Acad Sci U S A​  2020 Mar 31;117(13):7461-7470.  doi: 10.1073/pnas.1922095117. Epub 2020 Mar 13.

                           Guiling Zhao 1Humberto C Joca 2Mark T Nelson 3 4W Jonathan Lederer

Local control of blood flow in the heart is important yet poorly understood. Here we show that ATP-sensitive K+ channels (KATP), hugely abundant in cardiac ventricular myocytes, sense the local myocyte metabolic state and communicate a negative feedback signal-correction upstream electrically. This electro-metabolic voltage signal is transmitted instantaneously to cellular elements in the neighboring microvascular network through gap junctions, where it regulates contractile pericytes and smooth muscle cells and thus blood flow. As myocyte ATP is consumed in excess of production, [ATP]i decreases to increase the openings of KATP channels, which biases the electrically active myocytes in the hyperpolarization (negative) direction. This change leads to relative hyperpolarization of the electrically connected cells that include capillary endothelial cells, pericytes, and vascular smooth muscle cells. Such hyperpolarization decreases pericyte and vascular smooth muscle [Ca2+]i levels, thereby relaxing the contractile cells to increase local blood flow and delivery of nutrients to the local cardiac myocytes and to augment ATP production by their mitochondria. Our findings demonstrate the pivotal roles of local cardiac myocyte metabolism and KATP channels and the minor role of inward rectifier K+ (Kir2.1) channels in regulating blood flow in the heart. These findings establish a conceptually new framework for understanding the hugely reliable and incredibly robust local electro-metabolic microvascular regulation of blood flow in heart.

Dynamic Measurement and Imaging of Capillaries, Arterioles, and Pericytes in Mouse Heart

                                                      J Vis Exp​ 2020 Jul 29;(161). doi: 10.3791/61566

                                             Guiling Zhao 1Humberto C Joca 2W Jonathan Lederer

Coronary arterial tone along with the opening or closing of the capillaries largely determine the blood flow to cardiomyocytes at constant perfusion pressure. However, it is difficult to monitor the dynamic changes of the coronary arterioles and the capillaries in the whole heart, primarily due to its motion and non-stop beating. Here we describe a method that enables monitoring of arterial perfusion rate, pressure and the diameter changes of the arterioles and capillaries in mouse right ventricular papillary muscles. The mouse septal artery is cannulated and perfused at a constant flow or pressure with the other dynamically measured. After perfusion with a fluorescently labeled lectin (e.g., Alexa Fluor-488 or -633 labeled Wheat-Germ Agglutinin, WGA), the arterioles and capillaries (and other vessels) in right ventricle papillary muscle and septum could be readily imaged. The vessel-diameter changes could then be measured in the presence or absence of heart contractions. When genetically encoded fluorescent proteins were expressed, specific features could be monitored. For examples, pericytes were visualized in mouse hearts that expressed NG2-DsRed. This method has provided a useful platform to study the physiological functions of capillary pericytes in heart. It is also suitable for studying the effect of reagents on the blood flow in heart by measuring the vascular/capillary diameter and the arterial luminal pressure simultaneously. This preparation, combined with a state-of-the-art optic imaging system, allows one to study the blood flow and its control at cellular and molecular level in the heart under near-physiological conditions.

Regulation of Mitochondrial ATP Production: Ca 2+ Signaling and Quality Control

              Trends Mol Medicine 2020 Jan;26(1):21-39.  doi: 10.1016/j.molmed.2019.10.007. Epub 2019 Nov 22.

                                              Liron Boyman 1Mariusz Karbowski 2W Jonathan Lederer

Cardiac ATP production primarily depends on oxidative phosphorylation in mitochondria and is dynamically regulated by Ca2+ levels in the mitochondrial matrix as well as by cytosolic ADP. We discuss mitochondrial Ca2+ signaling and its dysfunction which has recently been linked to cardiac pathologies including arrhythmia and heart failure. Similar dysfunction in other excitable and long-lived cells including neurons is associated with neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Central to this new understanding is crucial Ca2+ regulation of both mitochondrial quality control and ATP production. Mitochondria-associated membrane (MAM) signaling from the sarcoplasmic reticulum (SR) and the endoplasmic reticulum (ER) to mitochondria is discussed. We propose future research directions that emphasize a need to define quantitatively the physiological roles of MAMs, as well as mitochondrial quality control and ATP production.

The surprising complexity of KATP channel biology and of genetic diseases

                                    J Clin Invest​ 2020 Mar 2;130(3):1112-1115. doi: 10.1172/JCI135759.

                              Guiling Zhao 1Aaron Kaplan 1 2Maura Greiser 1W Jonathan Lederer 

The ATP-sensitive K+ channel (KATP) is formed by the association of four inwardly rectifying K+ channel (Kir6.x) pore subunits with four sulphonylurea receptor (SUR) regulatory subunits. Kir6.x or SUR mutations result in KATP channelopathies, which reflect the physiological roles of these channels, including but not limited to insulin secretion, cardiac protection, and blood flow regulation. In this issue of the JCI, McClenaghan et al. explored one of the channelopathies, namely Cantu syndrome (CS), which is a result of one kind of KATP channel mutation. Using a knockin mouse model, the authors demonstrated that gain-of-function KATP mutations in vascular smooth muscle resulted in cardiac remodeling. Moreover, they were able to reverse the cardiovascular phenotypes by administering the KATP channel blocker glibenclamide. These results exemplify how genetic mutations can have an impact on developmental trajectories, and provide a therapeutic approach to mitigate cardiac hypertrophy in cases of CS.

Tubulin acetylation increases cytoskeletal stiffness to regulate mechanotransduction in striated muscle

AK Coleman, HC Joca, G Shi, WJ Lederer, CW Ward

Journal of General Physiology 153 (7), e202012743

Microtubules tune cytoskeletal stiffness, which affects cytoskeletal mechanics and mechanotransduction of striated muscle. While recent evidence suggests that microtubules enriched in detyrosinated α-tubulin regulate these processes in healthy muscle and increase them in disease, the possible contribution from several other α-tubulin modifications has not been investigated. Here, we used genetic and pharmacologic strategies in isolated cardiomyocytes and skeletal myofibers to increase the level of acetylated α-tubulin without altering the level of detyrosinated α-tubulin. We show that microtubules enriched in acetylated α-tubulin increase cytoskeletal stiffness and viscoelastic resistance. These changes slow rates of contraction and relaxation during unloaded contraction and increased activation of NADPH oxidase 2 (Nox2) by mechanotransduction. Together, these findings add to growing evidence that …

Join our mailing list for updates on publications and events

Thanks for submitting!

Rm 426 Howard Hall 

Baltimore, MD 21201

410-706-2663

© 2024 The Lederer Lab 

bottom of page